Effectiveness of digital planning-assisted orthognathic surgery combined with implantology in the treatment of severe malocclusions: a narrative review of functional and aesthetic outcomes

Autores

DOI:

https://doi.org/10.56183/plepist.v3i1.654

Palavras-chave:

Digital planning, orthognathic surgery, implantology, severe malocclusions, functional outcomes, aesthetic outcomes, virtual surgical planning, 3D imaging

Resumo

Background: Severe malocclusions impact aesthetics, function, and quality of life, necessitating integrated treatments like orthognathic surgery and implantology. Digital planning has transformed these procedures, improving precision and patient outcomes. This narrative review evaluates the effectiveness of digital planning-assisted orthognathic surgery combined with implantology, focusing on functional and aesthetic improvements in severe malocclusion cases. Methods: A systematic search across PubMed, Scopus, and Google Scholar (2014–2024) identified studies on digital planning in orthognathic surgery and its combination with implantology. Inclusion criteria targeted studies involving human subjects that examined functional or aesthetic outcomes. Key focus areas included virtual surgical planning (VSP) and 3D printing and their role in optimising treatment. Results: Digital planning-assisted orthognathic surgery significantly improves surgical precision, functional restoration, and aesthetic outcomes. VSP enables detailed 3D simulations, enhancing condylar positioning and soft tissue predictability with millimeter-level accuracy. These technologies reduce surgical errors, optimise implant placement, and facilitate interprofessional communication and patient engagement. Integration with 3D printing supports customised surgical guides, improving workflow efficiency and reducing planning time. Additionally, incorporating transparent aligner systems like Invisalign provides a fully digital continuum of care, enhancing periodontal health, oral hygiene, and aesthetic preferences. Conclusion: Digital planning-assisted orthognathic surgery and implantology offer substantial benefits, including improved precision, functional restoration, and aesthetic outcomes. Despite challenges, their potential to enhance patient comfort and surgical success underscores their value in modern dentistry. Future research should address cost barriers and refine predictive models to broaden accessibility.

Referências

Araújo, M. G., Silva, C. O., Souza, A. B., & Sukekava, F. (2019). Socket healing with and without immediate implant placement. Periodontology 2000, 79(1), 168–177. https://doi.org/10.1111/PRD.12252

Arisan, V., Karabuda, Z. C., Pişkin, B., & Özdemir, T. (2013). Conventional Multi-Slice Computed Tomography (CT) and Cone-Beam CT (CBCT) for Computer-Aided Implant Placement. Part II: Reliability of Mucosa-Supported Stereolithographic Guides. Clinical Implant Dentistry and Related Research, 15(6), 907–917. https://doi.org/10.1111/J.1708-8208.2011.00435.X

Baan, F., van Meggelen, E. M., Verhulst, A. C., Bruggink, R., Xi, T., & Maal, T. J. J. (2021). Virtual occlusion in orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 50(9), 1219–1225. https://doi.org/10.1016/j.ijom.2020.12.006

Beek, D. M., Baan, F., Liebregts, J., Bergé, S., Maal, T., & Xi, T. (2022). Surgical accuracy in 3D planned bimaxillary osteotomies: intraoral scans and plaster casts as digital dentition models. International Journal of Oral and Maxillofacial Surgery, 51(7), 922–928. https://doi.org/10.1016/J.IJOM.2021.11.016

Cassetta, M., Giansanti, M., Di Mambro, A., Calasso, S., & Barbato, E. (2013). Accuracy of two stereolithographic surgical templates: A retrospective study. Clinical Implant Dentistry and Related Research, 15(3), 448–459. https://doi.org/10.1111/J.1708-8208.2011.00369.X

Chandran K R, S., Goyal, M., Mittal, N., & George, J. S. (2023). Accuracy of freehand versus guided immediate implant placement: A randomised controlled trial. Journal of Dentistry, 136. https://doi.org/10.1016/J.JDENT.2023.104620

Chen, C. M., Tseng, Y. C., Ko, E. C., Chen, M. Y. C., Chen, K. J., & Cheng, J. H. (2018). Comparisons of Jaw Line and Face Line after Mandibular Setback: Intraoral Vertical Ramus versus Sagittal Split Ramus Osteotomies. BioMed Research International, 2018. https://doi.org/10.1155/2018/1375085

Cheung, L. K., Chan, Y. M., Jayaratne, Y. S. N., & Lo, J. (2011). Three-dimensional cephalometric norms of Chinese adults in Hong Kong with balanced facial profile. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 112(2). https://doi.org/10.1016/J.TRIPLEO.2011.02.045

Choi, W. S., Lee, S., McGrath, C., & Samman, N. (2010). Change in quality of life after combined orthodontic-surgical treatment of dentofacial deformities. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 109(1), 46–51. https://doi.org/10.1016/J.TRIPLEO.2009.08.019

Chrcanovic, B. R., Albrektsson, T., & Wennerberg, A. (2014). Reasons for failures of oral implants. Journal of Oral Rehabilitation, 41(6), 443–476. https://doi.org/10.1111/JOOR.12157

Cicciù, M., Fiorillo, L., D’Amico, C., Gambino, D., Amantia, E. M., Laino, L., Crimi, S., Campagna, P., Bianchi, A., Herford, A. S., & Cervino, G. (2020). 3D digital impression systems compared with traditional techniques in dentistry: A recent data systematic review. Materials, 13(8). https://doi.org/10.3390/MA13081982

Conny, D. J., & Tedesco, L. A. (1983). The gagging problem in prosthodontic treatment. Part I: Description and causes. The Journal of Prosthetic Dentistry, 49(5), 601–606. https://doi.org/10.1016/0022-3913(83)90381-5

Djeu, G., Shelton, C., & Maganzini, A. (2005). Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. American Journal of Orthodontics and Dentofacial Orthopedics, 128(3), 292–298. https://doi.org/10.1016/J.AJODO.2005.06.002

Feng, Y., Su, Z., Mo, A., & Yang, X. (2022). Comparison of the accuracy of immediate implant placement using static and dynamic computer-assisted implant system in the esthetic zone of the maxilla: a prospective study. International Journal of Implant Dentistry, 8(1). https://doi.org/10.1186/S40729-022-00464-W

Fleming, P. S., Marinho, V., & Johal, A. (2011). Orthodontic measurements on digital study models compared with plaster models: A systematic review. Orthodontics and Craniofacial Research, 14(1), 1–16. https://doi.org/10.1111/J.1601-6343.2010.01503.X

Frizzera, F., de Freitas, R., Muñoz-Chávez, O., Cabral, G., Shibli, J., & Marcantonio, E. (2019). Impact of Soft Tissue Grafts to Reduce Peri-implant Alterations After Immediate Implant Placement and Provisionalization in Compromised Sockets. The International Journal of Periodontics & Restorative Dentistry, 39(3), 381–389. https://doi.org/10.11607/PRD.3224

Gandedkar, N. H., Chng, C. K., & Yeow, V. K. L. (2016). Orthodontic-orthognathic interventions in orthognathic surgical cases: » paper surgery» and » model surgery» concepts in surgical orthodontics. Contemporary Clinical Dentistry, 7(3), 386–390. https://doi.org/10.4103/0976-237X.188575

Gateno, J., Xia, J. J., & Teichgraeber, J. F. (2011). New 3-dimensional cephalometric analysis for orthognathic surgery. Journal of Oral and Maxillofacial Surgery, 69(3), 606–622. https://doi.org/10.1016/J.JOMS.2010.09.010

Ghodasra, R., & Brizuela, M. (2023). Orthodontics, Malocclusion. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK592395/

Goodacre, C. J., Bernal, G., Rungcharassaeng, K., & Kan, J. Y. K. (2003). Clinical complications with implants and implant prostheses. Journal of Prosthetic Dentistry, 90(2), 121–132. https://doi.org/10.1016/S0022-3913(03)00212-9

Grünheid, T., McCarthy, S. D., & Larson, B. E. (2014). Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. American Journal of Orthodontics and Dentofacial Orthopedics, 146(5), 673–682. https://doi.org/10.1016/J.AJODO.2014.07.023

Han, X., Qi, C., Guo, P., Zhang, S., Xu, Y., Lv, G., Li, Y., & Li, C. (2021). Whole-process digitalization-assisted immediate implant placement and immediate restoration in the aesthetic zone: A prospective study. Medical Science Monitor, 27. https://doi.org/10.12659/MSM.931544

Hanafy, M., Abou-Elfetouh, A., & Mounir, R. M. (2019). Quality of life after different approaches of orthognathic surgery: A randomised controlled study. Minerva Stomatologica, 68(3), 112–117. https://doi.org/10.23736/S0026-4970.19.04227-4

Hassfeld, S., & Mühling, J. (2001). Computer-assisted oral and maxillofacial surgery - A review and an assessment of technology. International Journal of Oral and Maxillofacial Surgery, 30(1), 2–13. https://doi.org/10.1054/IJOM.2000.0024

Joda, T., & Brägger, U. (2015). Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clinical Oral Implants Research, 26(12), 1430–1435. https://doi.org/10.1111/CLR.12476

Joda, T., Lenherr, P., Dedem, P., Kovaltschuk, I., Bragger, U., & Zitzmann, N. U. (2017). Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: a randomised controlled trial. Clinical Oral Implants Research, 28(10), 1318–1323. https://doi.org/10.1111/CLR.12982

Kankam, H., Madari, S., Sawh-Martinez, R., Bruckman, K. C., & Steinbacher, D. M. (2019). Comparing outcomes in orthognathic surgery using clear aligners versus conventional fixed appliances. Journal of Craniofacial Surgery, 30(5), 1488–1491. https://doi.org/10.1097/SCS.0000000000005572

Ke, Y., Zhu, Y., & Zhu, M. (2019). A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health, 19(1). https://doi.org/10.1186/S12903-018-0695-Z

Khadka, A., Liu, Y., Li, J., Zhu, S., Luo, E., Feng, G., & Hu, J. (2011). Changes in quality of life after orthognathic surgery: A comparison based on the involvement of the occlusion. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 112(6), 719–725. https://doi.org/10.1016/j.tripleo.2011.01.002

Kraft, B., Frizzera, F., de Freitas, R. M., de Oliveira, G. J. L. P., & Marcantonio Junior, E. (2020). Impact of fully or partially guided surgery on the position of single implants immediately placed in maxillary incisor sockets: A randomised controlled clinical trial. Clinical Implant Dentistry and Related Research, 22(5), 631–637. https://doi.org/10.1111/CID.12941

Laverty, D. P., Buglass, J., & Patel, A. (2018). Flapless dental implant surgery and use of cone beam computer tomography-guided surgery. British Dental Journal, 224(8). https://doi.org/10.1038/SJ.BDJ.2018.268

Lavorgna, L., Cervino, G., Fiorillo, L., Di Leo, G., Troiano, G., Ortensi, M., Galantucci, L., & Cicciù, M. (2019). Reliability of a virtual prosthodontic project realised through a 2d and 3d photographic acquisition: An experimental study on the accuracy of different digital systems. International Journal of Environmental Research and Public Health, 16(24). https://doi.org/10.3390/IJERPH16245139

Lee, S. J., Yoo, J. Y., Woo, S. Y., Yang, H. J., Kim, J. E., Huh, K. H., Lee, S. S., Heo, M. S., Hwang, S. J., & Yi, W. J. (2021). A complete digital workflow for planning, simulation, and evaluation in orthognathic surgery. Journal of Clinical Medicine, 10(17). https://doi.org/10.3390/JCM10174000

Li, M., Shen, S., Zhao, Z., Wang, B., & Yu, H. (2023). The application of a fully digital approach in treating skeletal class III malocclusion: a preliminary study. BMC Oral Health, 23(1), 237. https://doi.org/10.1186/S12903-023-02918-Y

Liddle, M. J., Baker, S. R., Smith, K. G., & Thompson, A. R. (2015). Psychosocial Outcomes in Orthognathic Surgery: A Review of the Literature. Cleft Palate-Craniofacial Journal, 52(4), 458–470. https://doi.org/10.1597/14-021

Lin, H. H., Kuo, J. C., Lo, L. J., & Ho, C. T. (2023). Optimising Orthognathic Surgery: Leveraging the Average Skull as a Dynamic Template for Surgical Simulation and Planning in 30 Patient Cases. Journal of Clinical Medicine, 12(24), 7758. https://doi.org/10.3390/JCM12247758

Lin, H. H., Lonic, D., & Lo, L. J. (2018). 3D printing in orthognathic surgery − A literature review. Journal of the Formosan Medical Association, 117(7), 547–558. https://doi.org/10.1016/J.JFMA.2018.01.008

Lou, F., Rao, P., Zhang, M., Luo, S., Lu, S., & Xiao, J. (2021). Accuracy evaluation of partially guided and fully guided templates applied to implant surgery of anterior teeth: A randomised controlled trial. Clinical Implant Dentistry and Related Research, 23(1), 117–130. https://doi.org/10.1111/CID.12980

Means, C. R., & Flenniken, I. E. (1970). Gagging problem in prosthetic dentistry. The Journal of Prosthetic Dentistry, 23(6), 614–620. https://doi.org/10.1016/0022-3913(70)90224-6

Misch, C. E., Goodacre, C. J., Finley, J. M., Misch, C. M., Marinbach, M., Dabrowski, T., English, C. E., Kois, J. C., & Cronin, R. J. (2005). Consensus conference panel report: Crown-height space guidelines for implant dentistry- Part 1. Implant Dentistry, 14(4), 312–321. https://doi.org/10.1097/01.ID.0000188375.76066.23

Mulier, D., Gaitán Romero, L., Führer, A., Martin, C., Shujaat, S., Shaheen, E., Politis, C., & Jacobs, R. (2021). Long-Term dental stability after orthognathic surgery: A systematic review. European Journal of Orthodontics, 43(1), 104–112. https://doi.org/10.1093/EJO/CJAA022

Nadjmi, N., Mollemans, W., Daelemans, A., Van Hemelen, G., Schutyser, F., & Bergé, S. (2010). Virtual occlusion in planning orthognathic surgical procedures. International Journal of Oral and Maxillofacial Surgery, 39(5), 457–462. https://doi.org/10.1016/j.ijom.2010.02.002

Naidu, D., & Freer, T. J. (2013). Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. American Journal of Orthodontics and Dentofacial Orthopedics, 144(2), 304–310. https://doi.org/10.1016/J.AJODO.2013.04.011

Plooij, J. M., Maal, T. J. J., Haers, P., Borstlap, W. A., Kuijpers-Jagtman, A. M., & Bergé, S. J. (2011). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. International Journal of Oral and Maxillofacial Surgery, 40(4), 341–352. https://doi.org/10.1016/j.ijom.2010.10.013

Poeschl, P. W., Schmidt, N., Guevara-Rojas, G., Seemann, R., Ewers, R., Zipko, H. T., & Schicho, K. (2013). Comparison of cone-beam and conventional multislice computed tomography for image-guided dental implant planning. Clinical Oral Investigations, 17(1), 317–324. https://doi.org/10.1007/S00784-012-0704-6

Schneider, D., Marquardt, P., Zwahlen, M., & Jung, R. E. (2009). A systematic review of the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clinical Oral Implants Research, 20(SUPPL. 4), 73–86. https://doi.org/10.1111/J.1600-0501.2009.01788.X

Schnutenhaus, S., Edelmann, C., Rudolph, H., & Luthardt, R. G. (2016). A retrospective study was conducted to determine the accuracy of template-guided implant placement using a novel nonradiologic evaluation method. Oral Surgery, Medicine, Pathology and Radiology, 121(4), e72–e79. https://doi.org/10.1016/j.oooo.2015.12.012

Seh, A. H., Zarour, M., Alenezi, M., Sarkar, A. K., Agrawal, A., Kumar, R., & Khan, R. A. (2020). Healthcare data breaches: Insights and implications. Healthcare (Switzerland), 8(2). https://doi.org/10.3390/HEALTHCARE8020133

Seo, H. J., & Choi, Y. K. (2021). Current trends in orthognathic surgery. Archives of Craniofacial Surgery, 22(6), 287–295. https://doi.org/10.7181/ACFS.2021.00598

Silva, I., Cardemil, C., Kashani, H., Bazargani, F., Tarnow, P., Rasmusson, L., & Suska, F. (2016). Quality of life in patients undergoing orthognathic surgery – A two-centered Swedish study. Journal of Cranio-Maxillofacial Surgery, 44(8), 973–978. https://doi.org/10.1016/J.JCMS.2016.04.005

Soh, C. L., & Narayanan, V. (2013). Quality of life assessment in patients with dentofacial deformity undergoing orthognathic surgery - A systematic review. International Journal of Oral and Maxillofacial Surgery, 42(8), 974–980. https://doi.org/10.1016/J.IJOM.2013.03.023

Steenen, S. A., van Teeseling, R. A., Vulink, N. C. C., & Becking, A. G. (2014). [Psychological aspects of orthognathic surgery]. Nederlands Tijdschrift Voor Tandheelkunde, 121(9), 446–452. https://doi.org/10.5177/NTVT.2014.09.14114

Steinhuber, T., Brunold, S., Gärtner, C., Offermanns, V., Ulmer, H., & Ploder, O. (2018). Is Virtual Surgical Planning in Orthognathic Surgery Faster Than Conventional Planning? A Time and Workflow Analysis of an Office-Based Workflow for Single- and Double-Jaw Surgery. Journal of Oral and Maxillofacial Surgery, 76(2), 397–407. https://doi.org/10.1016/J.JOMS.2017.07.162

Sun, H., Shang, H. tao, He, L. sheng, Ding, M. chao, Su, Z. ping, & Shi, Y. lin. (2018). Assessing the Quality of Life in Patients With Dentofacial Deformities Before and After Orthognathic Surgery. Journal of Oral and Maxillofacial Surgery, 76(10), 2192–2201. https://doi.org/10.1016/J.JOMS.2018.03.026

Tallarico, M., Czajkowska, M., Cicciù, M., Giardina, F., Minciarelli, A., Zadrożny, Ł., Park, C. J., & Meloni, S. M. (2021). A systematic review: a systematic revieww of the accuracy of surgical templates with and without metallic sleeves in partial arch restorations. Accuracy of surgical templates with and without metallic sleeves. Journal of Dentistry, 115. https://doi.org/10.1016/j.jdent.2021.103852

Tallarico, M., Kim, Y. J., Cocchi, F., Martinolli, M., & Meloni, S. M. (2019). Accuracy of newly developed sleeve-designed templates for insertion of dental implants: A prospective multicenter cclinical trial Clinical Implant Dentistry and Related Research, 21(1), 108–113. https://doi.org/10.1111/CID.12704

Tarraf, N. E., & Ali, D. M. (2018). Present and the future of digital orthodontics✰. Seminars in Orthodontics, 24(4), 376–385. https://doi.org/10.1053/j.sodo.2018.10.002

Ting-shu, S., & Jian, S. (2015). Intraoral Digital Impression Technique: A Review. Journal of Prosthodontics, 24(4), 313–321. https://doi.org/10.1111/JOPR.12218

Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014

Wiranto, M. G., Engelbrecht, W. P., Tutein Nolthenius, H. E., Van Der Meer, W. J., & Ren, Y. (2013). Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. American Journal of Orthodontics and Dentofacial Orthopedics, 143(1), 140–147. https://doi.org/10.1016/j.ajodo.2012.06.018

Xia, J. J., Gateno, J., & Teichgraeber, J. F. (2009). New Clinical Protocol to Evaluate Craniomaxillofacial Deformity and Plan Surgical Correction. Journal of Oral and Maxillofacial Surgery, 67(10), 2093–2106. https://doi.org/10.1016/J.JOMS.2009.04.057

Xing, Q., Lin, J., & Lyu, M. (2024). The Accuracy of Immediate Implantation Guided by Digital Templates and Potential Influencing Factors: A Systematic Review. International Dental Journal. https://doi.org/10.1016/J.IDENTJ.2024.10.010

Yen, S., Hammoudeh, J., Edwards, S. P., & Urata, M. (2020). Orthodontic Considerations for Cleft Orthognathic Surgery. Oral and Maxillofacial Surgery Clinics of North America, 32(2), 249–267. https://doi.org/10.1016/J.COMS.2020.01.013

Younes, F., Cosyn, J., De Bruyckere, T., Cleymaet, R., Bouckaert, E., & Eghbali, A. (2018). A randomised controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. Journal of Clinical Periodontology, 45(6), 721–732. https://doi.org/10.1111/JCPE.12897

Zhang, W., & Yang, H. (2022). Orthognathic surgery in Invisalign patients. Journal of Craniofacial Surgery, 33(2), E112–E113. https://doi.org/10.1097/SCS.0000000000007968

Zhou, W., Liu, Z., Song, L., Kuo, C. ling, & Shafer, D. M. (2018). Clinical Factors Affecting the Accuracy of Guided Implant Surgery—A Systematic Review and Meta-analysis. Journal of Evidence-Based Dental Practice, 18(1), 28–40. https://doi.org/10.1016/J.JEBDP.2017.07.007

Downloads

Publicado

2025-01-31