Effectiveness of digital planning-assisted orthognathic surgery combined with implantology in the treatment of severe malocclusions: a narrative review of functional and aesthetic outcomes
DOI:
https://doi.org/10.56183/plepist.v3i1.654Palavras-chave:
Digital planning, orthognathic surgery, implantology, severe malocclusions, functional outcomes, aesthetic outcomes, virtual surgical planning, 3D imagingResumo
Background: Severe malocclusions impact aesthetics, function, and quality of life, necessitating integrated treatments like orthognathic surgery and implantology. Digital planning has transformed these procedures, improving precision and patient outcomes. This narrative review evaluates the effectiveness of digital planning-assisted orthognathic surgery combined with implantology, focusing on functional and aesthetic improvements in severe malocclusion cases. Methods: A systematic search across PubMed, Scopus, and Google Scholar (2014–2024) identified studies on digital planning in orthognathic surgery and its combination with implantology. Inclusion criteria targeted studies involving human subjects that examined functional or aesthetic outcomes. Key focus areas included virtual surgical planning (VSP) and 3D printing and their role in optimising treatment. Results: Digital planning-assisted orthognathic surgery significantly improves surgical precision, functional restoration, and aesthetic outcomes. VSP enables detailed 3D simulations, enhancing condylar positioning and soft tissue predictability with millimeter-level accuracy. These technologies reduce surgical errors, optimise implant placement, and facilitate interprofessional communication and patient engagement. Integration with 3D printing supports customised surgical guides, improving workflow efficiency and reducing planning time. Additionally, incorporating transparent aligner systems like Invisalign provides a fully digital continuum of care, enhancing periodontal health, oral hygiene, and aesthetic preferences. Conclusion: Digital planning-assisted orthognathic surgery and implantology offer substantial benefits, including improved precision, functional restoration, and aesthetic outcomes. Despite challenges, their potential to enhance patient comfort and surgical success underscores their value in modern dentistry. Future research should address cost barriers and refine predictive models to broaden accessibility.
Referências
Araújo, M. G., Silva, C. O., Souza, A. B., & Sukekava, F. (2019). Socket healing with and without immediate implant placement. Periodontology 2000, 79(1), 168–177. https://doi.org/10.1111/PRD.12252
Arisan, V., Karabuda, Z. C., Pişkin, B., & Özdemir, T. (2013). Conventional Multi-Slice Computed Tomography (CT) and Cone-Beam CT (CBCT) for Computer-Aided Implant Placement. Part II: Reliability of Mucosa-Supported Stereolithographic Guides. Clinical Implant Dentistry and Related Research, 15(6), 907–917. https://doi.org/10.1111/J.1708-8208.2011.00435.X
Baan, F., van Meggelen, E. M., Verhulst, A. C., Bruggink, R., Xi, T., & Maal, T. J. J. (2021). Virtual occlusion in orthognathic surgery. International Journal of Oral and Maxillofacial Surgery, 50(9), 1219–1225. https://doi.org/10.1016/j.ijom.2020.12.006
Beek, D. M., Baan, F., Liebregts, J., Bergé, S., Maal, T., & Xi, T. (2022). Surgical accuracy in 3D planned bimaxillary osteotomies: intraoral scans and plaster casts as digital dentition models. International Journal of Oral and Maxillofacial Surgery, 51(7), 922–928. https://doi.org/10.1016/J.IJOM.2021.11.016
Cassetta, M., Giansanti, M., Di Mambro, A., Calasso, S., & Barbato, E. (2013). Accuracy of two stereolithographic surgical templates: A retrospective study. Clinical Implant Dentistry and Related Research, 15(3), 448–459. https://doi.org/10.1111/J.1708-8208.2011.00369.X
Chandran K R, S., Goyal, M., Mittal, N., & George, J. S. (2023). Accuracy of freehand versus guided immediate implant placement: A randomised controlled trial. Journal of Dentistry, 136. https://doi.org/10.1016/J.JDENT.2023.104620
Chen, C. M., Tseng, Y. C., Ko, E. C., Chen, M. Y. C., Chen, K. J., & Cheng, J. H. (2018). Comparisons of Jaw Line and Face Line after Mandibular Setback: Intraoral Vertical Ramus versus Sagittal Split Ramus Osteotomies. BioMed Research International, 2018. https://doi.org/10.1155/2018/1375085
Cheung, L. K., Chan, Y. M., Jayaratne, Y. S. N., & Lo, J. (2011). Three-dimensional cephalometric norms of Chinese adults in Hong Kong with balanced facial profile. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 112(2). https://doi.org/10.1016/J.TRIPLEO.2011.02.045
Choi, W. S., Lee, S., McGrath, C., & Samman, N. (2010). Change in quality of life after combined orthodontic-surgical treatment of dentofacial deformities. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 109(1), 46–51. https://doi.org/10.1016/J.TRIPLEO.2009.08.019
Chrcanovic, B. R., Albrektsson, T., & Wennerberg, A. (2014). Reasons for failures of oral implants. Journal of Oral Rehabilitation, 41(6), 443–476. https://doi.org/10.1111/JOOR.12157
Cicciù, M., Fiorillo, L., D’Amico, C., Gambino, D., Amantia, E. M., Laino, L., Crimi, S., Campagna, P., Bianchi, A., Herford, A. S., & Cervino, G. (2020). 3D digital impression systems compared with traditional techniques in dentistry: A recent data systematic review. Materials, 13(8). https://doi.org/10.3390/MA13081982
Conny, D. J., & Tedesco, L. A. (1983). The gagging problem in prosthodontic treatment. Part I: Description and causes. The Journal of Prosthetic Dentistry, 49(5), 601–606. https://doi.org/10.1016/0022-3913(83)90381-5
Djeu, G., Shelton, C., & Maganzini, A. (2005). Outcome assessment of Invisalign and traditional orthodontic treatment compared with the American Board of Orthodontics objective grading system. American Journal of Orthodontics and Dentofacial Orthopedics, 128(3), 292–298. https://doi.org/10.1016/J.AJODO.2005.06.002
Feng, Y., Su, Z., Mo, A., & Yang, X. (2022). Comparison of the accuracy of immediate implant placement using static and dynamic computer-assisted implant system in the esthetic zone of the maxilla: a prospective study. International Journal of Implant Dentistry, 8(1). https://doi.org/10.1186/S40729-022-00464-W
Fleming, P. S., Marinho, V., & Johal, A. (2011). Orthodontic measurements on digital study models compared with plaster models: A systematic review. Orthodontics and Craniofacial Research, 14(1), 1–16. https://doi.org/10.1111/J.1601-6343.2010.01503.X
Frizzera, F., de Freitas, R., Muñoz-Chávez, O., Cabral, G., Shibli, J., & Marcantonio, E. (2019). Impact of Soft Tissue Grafts to Reduce Peri-implant Alterations After Immediate Implant Placement and Provisionalization in Compromised Sockets. The International Journal of Periodontics & Restorative Dentistry, 39(3), 381–389. https://doi.org/10.11607/PRD.3224
Gandedkar, N. H., Chng, C. K., & Yeow, V. K. L. (2016). Orthodontic-orthognathic interventions in orthognathic surgical cases: » paper surgery» and » model surgery» concepts in surgical orthodontics. Contemporary Clinical Dentistry, 7(3), 386–390. https://doi.org/10.4103/0976-237X.188575
Gateno, J., Xia, J. J., & Teichgraeber, J. F. (2011). New 3-dimensional cephalometric analysis for orthognathic surgery. Journal of Oral and Maxillofacial Surgery, 69(3), 606–622. https://doi.org/10.1016/J.JOMS.2010.09.010
Ghodasra, R., & Brizuela, M. (2023). Orthodontics, Malocclusion. StatPearls. https://www.ncbi.nlm.nih.gov/books/NBK592395/
Goodacre, C. J., Bernal, G., Rungcharassaeng, K., & Kan, J. Y. K. (2003). Clinical complications with implants and implant prostheses. Journal of Prosthetic Dentistry, 90(2), 121–132. https://doi.org/10.1016/S0022-3913(03)00212-9
Grünheid, T., McCarthy, S. D., & Larson, B. E. (2014). Clinical use of a direct chairside oral scanner: An assessment of accuracy, time, and patient acceptance. American Journal of Orthodontics and Dentofacial Orthopedics, 146(5), 673–682. https://doi.org/10.1016/J.AJODO.2014.07.023
Han, X., Qi, C., Guo, P., Zhang, S., Xu, Y., Lv, G., Li, Y., & Li, C. (2021). Whole-process digitalization-assisted immediate implant placement and immediate restoration in the aesthetic zone: A prospective study. Medical Science Monitor, 27. https://doi.org/10.12659/MSM.931544
Hanafy, M., Abou-Elfetouh, A., & Mounir, R. M. (2019). Quality of life after different approaches of orthognathic surgery: A randomised controlled study. Minerva Stomatologica, 68(3), 112–117. https://doi.org/10.23736/S0026-4970.19.04227-4
Hassfeld, S., & Mühling, J. (2001). Computer-assisted oral and maxillofacial surgery - A review and an assessment of technology. International Journal of Oral and Maxillofacial Surgery, 30(1), 2–13. https://doi.org/10.1054/IJOM.2000.0024
Joda, T., & Brägger, U. (2015). Digital vs. conventional implant prosthetic workflows: a cost/time analysis. Clinical Oral Implants Research, 26(12), 1430–1435. https://doi.org/10.1111/CLR.12476
Joda, T., Lenherr, P., Dedem, P., Kovaltschuk, I., Bragger, U., & Zitzmann, N. U. (2017). Time efficiency, difficulty, and operator’s preference comparing digital and conventional implant impressions: a randomised controlled trial. Clinical Oral Implants Research, 28(10), 1318–1323. https://doi.org/10.1111/CLR.12982
Kankam, H., Madari, S., Sawh-Martinez, R., Bruckman, K. C., & Steinbacher, D. M. (2019). Comparing outcomes in orthognathic surgery using clear aligners versus conventional fixed appliances. Journal of Craniofacial Surgery, 30(5), 1488–1491. https://doi.org/10.1097/SCS.0000000000005572
Ke, Y., Zhu, Y., & Zhu, M. (2019). A comparison of treatment effectiveness between clear aligner and fixed appliance therapies. BMC Oral Health, 19(1). https://doi.org/10.1186/S12903-018-0695-Z
Khadka, A., Liu, Y., Li, J., Zhu, S., Luo, E., Feng, G., & Hu, J. (2011). Changes in quality of life after orthognathic surgery: A comparison based on the involvement of the occlusion. Oral Surgery, Medicine, Pathology, Oral Radiology and Endodontology, 112(6), 719–725. https://doi.org/10.1016/j.tripleo.2011.01.002
Kraft, B., Frizzera, F., de Freitas, R. M., de Oliveira, G. J. L. P., & Marcantonio Junior, E. (2020). Impact of fully or partially guided surgery on the position of single implants immediately placed in maxillary incisor sockets: A randomised controlled clinical trial. Clinical Implant Dentistry and Related Research, 22(5), 631–637. https://doi.org/10.1111/CID.12941
Laverty, D. P., Buglass, J., & Patel, A. (2018). Flapless dental implant surgery and use of cone beam computer tomography-guided surgery. British Dental Journal, 224(8). https://doi.org/10.1038/SJ.BDJ.2018.268
Lavorgna, L., Cervino, G., Fiorillo, L., Di Leo, G., Troiano, G., Ortensi, M., Galantucci, L., & Cicciù, M. (2019). Reliability of a virtual prosthodontic project realised through a 2d and 3d photographic acquisition: An experimental study on the accuracy of different digital systems. International Journal of Environmental Research and Public Health, 16(24). https://doi.org/10.3390/IJERPH16245139
Lee, S. J., Yoo, J. Y., Woo, S. Y., Yang, H. J., Kim, J. E., Huh, K. H., Lee, S. S., Heo, M. S., Hwang, S. J., & Yi, W. J. (2021). A complete digital workflow for planning, simulation, and evaluation in orthognathic surgery. Journal of Clinical Medicine, 10(17). https://doi.org/10.3390/JCM10174000
Li, M., Shen, S., Zhao, Z., Wang, B., & Yu, H. (2023). The application of a fully digital approach in treating skeletal class III malocclusion: a preliminary study. BMC Oral Health, 23(1), 237. https://doi.org/10.1186/S12903-023-02918-Y
Liddle, M. J., Baker, S. R., Smith, K. G., & Thompson, A. R. (2015). Psychosocial Outcomes in Orthognathic Surgery: A Review of the Literature. Cleft Palate-Craniofacial Journal, 52(4), 458–470. https://doi.org/10.1597/14-021
Lin, H. H., Kuo, J. C., Lo, L. J., & Ho, C. T. (2023). Optimising Orthognathic Surgery: Leveraging the Average Skull as a Dynamic Template for Surgical Simulation and Planning in 30 Patient Cases. Journal of Clinical Medicine, 12(24), 7758. https://doi.org/10.3390/JCM12247758
Lin, H. H., Lonic, D., & Lo, L. J. (2018). 3D printing in orthognathic surgery − A literature review. Journal of the Formosan Medical Association, 117(7), 547–558. https://doi.org/10.1016/J.JFMA.2018.01.008
Lou, F., Rao, P., Zhang, M., Luo, S., Lu, S., & Xiao, J. (2021). Accuracy evaluation of partially guided and fully guided templates applied to implant surgery of anterior teeth: A randomised controlled trial. Clinical Implant Dentistry and Related Research, 23(1), 117–130. https://doi.org/10.1111/CID.12980
Means, C. R., & Flenniken, I. E. (1970). Gagging problem in prosthetic dentistry. The Journal of Prosthetic Dentistry, 23(6), 614–620. https://doi.org/10.1016/0022-3913(70)90224-6
Misch, C. E., Goodacre, C. J., Finley, J. M., Misch, C. M., Marinbach, M., Dabrowski, T., English, C. E., Kois, J. C., & Cronin, R. J. (2005). Consensus conference panel report: Crown-height space guidelines for implant dentistry- Part 1. Implant Dentistry, 14(4), 312–321. https://doi.org/10.1097/01.ID.0000188375.76066.23
Mulier, D., Gaitán Romero, L., Führer, A., Martin, C., Shujaat, S., Shaheen, E., Politis, C., & Jacobs, R. (2021). Long-Term dental stability after orthognathic surgery: A systematic review. European Journal of Orthodontics, 43(1), 104–112. https://doi.org/10.1093/EJO/CJAA022
Nadjmi, N., Mollemans, W., Daelemans, A., Van Hemelen, G., Schutyser, F., & Bergé, S. (2010). Virtual occlusion in planning orthognathic surgical procedures. International Journal of Oral and Maxillofacial Surgery, 39(5), 457–462. https://doi.org/10.1016/j.ijom.2010.02.002
Naidu, D., & Freer, T. J. (2013). Validity, reliability, and reproducibility of the iOC intraoral scanner: A comparison of tooth widths and Bolton ratios. American Journal of Orthodontics and Dentofacial Orthopedics, 144(2), 304–310. https://doi.org/10.1016/J.AJODO.2013.04.011
Plooij, J. M., Maal, T. J. J., Haers, P., Borstlap, W. A., Kuijpers-Jagtman, A. M., & Bergé, S. J. (2011). Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery. A systematic review. International Journal of Oral and Maxillofacial Surgery, 40(4), 341–352. https://doi.org/10.1016/j.ijom.2010.10.013
Poeschl, P. W., Schmidt, N., Guevara-Rojas, G., Seemann, R., Ewers, R., Zipko, H. T., & Schicho, K. (2013). Comparison of cone-beam and conventional multislice computed tomography for image-guided dental implant planning. Clinical Oral Investigations, 17(1), 317–324. https://doi.org/10.1007/S00784-012-0704-6
Schneider, D., Marquardt, P., Zwahlen, M., & Jung, R. E. (2009). A systematic review of the accuracy and the clinical outcome of computer-guided template-based implant dentistry. Clinical Oral Implants Research, 20(SUPPL. 4), 73–86. https://doi.org/10.1111/J.1600-0501.2009.01788.X
Schnutenhaus, S., Edelmann, C., Rudolph, H., & Luthardt, R. G. (2016). A retrospective study was conducted to determine the accuracy of template-guided implant placement using a novel nonradiologic evaluation method. Oral Surgery, Medicine, Pathology and Radiology, 121(4), e72–e79. https://doi.org/10.1016/j.oooo.2015.12.012
Seh, A. H., Zarour, M., Alenezi, M., Sarkar, A. K., Agrawal, A., Kumar, R., & Khan, R. A. (2020). Healthcare data breaches: Insights and implications. Healthcare (Switzerland), 8(2). https://doi.org/10.3390/HEALTHCARE8020133
Seo, H. J., & Choi, Y. K. (2021). Current trends in orthognathic surgery. Archives of Craniofacial Surgery, 22(6), 287–295. https://doi.org/10.7181/ACFS.2021.00598
Silva, I., Cardemil, C., Kashani, H., Bazargani, F., Tarnow, P., Rasmusson, L., & Suska, F. (2016). Quality of life in patients undergoing orthognathic surgery – A two-centered Swedish study. Journal of Cranio-Maxillofacial Surgery, 44(8), 973–978. https://doi.org/10.1016/J.JCMS.2016.04.005
Soh, C. L., & Narayanan, V. (2013). Quality of life assessment in patients with dentofacial deformity undergoing orthognathic surgery - A systematic review. International Journal of Oral and Maxillofacial Surgery, 42(8), 974–980. https://doi.org/10.1016/J.IJOM.2013.03.023
Steenen, S. A., van Teeseling, R. A., Vulink, N. C. C., & Becking, A. G. (2014). [Psychological aspects of orthognathic surgery]. Nederlands Tijdschrift Voor Tandheelkunde, 121(9), 446–452. https://doi.org/10.5177/NTVT.2014.09.14114
Steinhuber, T., Brunold, S., Gärtner, C., Offermanns, V., Ulmer, H., & Ploder, O. (2018). Is Virtual Surgical Planning in Orthognathic Surgery Faster Than Conventional Planning? A Time and Workflow Analysis of an Office-Based Workflow for Single- and Double-Jaw Surgery. Journal of Oral and Maxillofacial Surgery, 76(2), 397–407. https://doi.org/10.1016/J.JOMS.2017.07.162
Sun, H., Shang, H. tao, He, L. sheng, Ding, M. chao, Su, Z. ping, & Shi, Y. lin. (2018). Assessing the Quality of Life in Patients With Dentofacial Deformities Before and After Orthognathic Surgery. Journal of Oral and Maxillofacial Surgery, 76(10), 2192–2201. https://doi.org/10.1016/J.JOMS.2018.03.026
Tallarico, M., Czajkowska, M., Cicciù, M., Giardina, F., Minciarelli, A., Zadrożny, Ł., Park, C. J., & Meloni, S. M. (2021). A systematic review: a systematic revieww of the accuracy of surgical templates with and without metallic sleeves in partial arch restorations. Accuracy of surgical templates with and without metallic sleeves. Journal of Dentistry, 115. https://doi.org/10.1016/j.jdent.2021.103852
Tallarico, M., Kim, Y. J., Cocchi, F., Martinolli, M., & Meloni, S. M. (2019). Accuracy of newly developed sleeve-designed templates for insertion of dental implants: A prospective multicenter cclinical trial Clinical Implant Dentistry and Related Research, 21(1), 108–113. https://doi.org/10.1111/CID.12704
Tarraf, N. E., & Ali, D. M. (2018). Present and the future of digital orthodontics✰. Seminars in Orthodontics, 24(4), 376–385. https://doi.org/10.1053/j.sodo.2018.10.002
Ting-shu, S., & Jian, S. (2015). Intraoral Digital Impression Technique: A Review. Journal of Prosthodontics, 24(4), 313–321. https://doi.org/10.1111/JOPR.12218
Van Noort, R. (2012). The future of dental devices is digital. Dental Materials, 28(1), 3–12. https://doi.org/10.1016/j.dental.2011.10.014
Wiranto, M. G., Engelbrecht, W. P., Tutein Nolthenius, H. E., Van Der Meer, W. J., & Ren, Y. (2013). Validity, reliability, and reproducibility of linear measurements on digital models obtained from intraoral and cone-beam computed tomography scans of alginate impressions. American Journal of Orthodontics and Dentofacial Orthopedics, 143(1), 140–147. https://doi.org/10.1016/j.ajodo.2012.06.018
Xia, J. J., Gateno, J., & Teichgraeber, J. F. (2009). New Clinical Protocol to Evaluate Craniomaxillofacial Deformity and Plan Surgical Correction. Journal of Oral and Maxillofacial Surgery, 67(10), 2093–2106. https://doi.org/10.1016/J.JOMS.2009.04.057
Xing, Q., Lin, J., & Lyu, M. (2024). The Accuracy of Immediate Implantation Guided by Digital Templates and Potential Influencing Factors: A Systematic Review. International Dental Journal. https://doi.org/10.1016/J.IDENTJ.2024.10.010
Yen, S., Hammoudeh, J., Edwards, S. P., & Urata, M. (2020). Orthodontic Considerations for Cleft Orthognathic Surgery. Oral and Maxillofacial Surgery Clinics of North America, 32(2), 249–267. https://doi.org/10.1016/J.COMS.2020.01.013
Younes, F., Cosyn, J., De Bruyckere, T., Cleymaet, R., Bouckaert, E., & Eghbali, A. (2018). A randomised controlled study on the accuracy of free-handed, pilot-drill guided and fully guided implant surgery in partially edentulous patients. Journal of Clinical Periodontology, 45(6), 721–732. https://doi.org/10.1111/JCPE.12897
Zhang, W., & Yang, H. (2022). Orthognathic surgery in Invisalign patients. Journal of Craniofacial Surgery, 33(2), E112–E113. https://doi.org/10.1097/SCS.0000000000007968
Zhou, W., Liu, Z., Song, L., Kuo, C. ling, & Shafer, D. M. (2018). Clinical Factors Affecting the Accuracy of Guided Implant Surgery—A Systematic Review and Meta-analysis. Journal of Evidence-Based Dental Practice, 18(1), 28–40. https://doi.org/10.1016/J.JEBDP.2017.07.007
Downloads
Publicado
Edição
Seção
Licença
Copyright (c) 2025 Wilmer Israel Morocho Sánchez, Grace Paola Guailla Rea, Daniela Beatriz Ganchozo Peralta, María Fernanda Cáceres Flores, Pedro Esteban Fernandez Montalvo

Este trabalho está licenciado sob uma licença Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.